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Abstract

Human motion can be understood on many levels. The
most basic level is the notion that humans are collec-
tions of things that have predictable visual appearance.
Next is the notion that humans exist in a physical uni-
verse, as a consequence of this, a large part of human
motion can be modeled and predicted with the laws of
physics. Finally there is the notion that humans utilize
muscles to actively shape purposeful motion. We em-
ploy a recursive framework for real-time, 3-D tracking
of human motion that enables pixel-level, probabilistic
processes to take advantage of the contextual knowledge
encoded in the higher-level models, including models of
dynamic constraints on human motion. We will show
that models of purposeful action arise naturally from
this framework, and further, that those models can be
used to improve the perception of human motion. Re-
sults are shown that demonstrate automatic discovery
of features in this new feature space.

1 Introduction

This paper describes a motion understanding framework
that relies on our real-time, fully-dynamic, 3-D person
tracking system. The dynamic tracking is driven by 2-D
blob features observed in two or more cameras [9], and is
informed by behavior models that estimate control sig-
nals. These features and controls are then probabilisti-
cally integrated by a fully-dynamic 3-D skeletal model,
which in turn drives the 2-D feature tracking process
by setting appropriate prior probabilities. The intrinsic
state of the skeletal model is also used by the behavior
module to choose the appropriate control strategy.

The feedback between 3-D model and 2-D image fea-
tures is a recursive filter, similar to an extended Kalman.
One unusual aspect of our approach is that the filter
directly couples raw pixel measurements with an artic-
ulated dynamic model of the human skeleton. Previous
attempts at person tracking have utilized a generic set of
image features (e.g., edges, optical flow) that were com-
puted as a preprocessing step, without consideration of
the task to be accomplished. In this aspect our system
is similar to that of Dickmanns in automobile control[3],

and our previous research shows that we obtain similar
advantages in efficiency and stability though this direct
coupling.

We will show how this framework can go beyond
passive physics of the body by incorporating various
patterns of control (which we call ‘behaviors’) that are
learned from observing humans while they perform var-
ious tasks. Behaviors are defined as those aspects of
the motion that cannot be explained by passive physics
alone. In the untrained tracker these manifest as signif-
icant structure in the innovations process (the sequence
of prediction errors). Sets of behaviors that explain
some collection of motion will be called a behavior al-

phabet. These alphabets can be automatically discov-
ered and can then be used to recognize and predict this
purposeful aspect of human motion.

This paper will briefly discuss the formulation of our
3-D skeletal model in Section 2.1, followed by an expla-
nation of how to drive that model from 2-D probabilistic
measurements, and how 2-D observations and feedback
relate to that model in Section 2.2. Section 3 explains
the behavior system and its intimate relationship with
the physical model. Finally, we will report on exper-
iments showing the results of automatic alphabet dis-
covery in different contexts and the affect of behavior
models on tracking performance in Section 4.

1.1 Related Work

The work described in this paper attempts to combine
the the dynamic modeling work with the advantages of
a recursive approach, by use of a formulation related to
the extended Kalman filter that couples a fully dynamic
skeletal model with observations of raw pixel values, as
modeled by probabilistic ‘blob’ models[5, 9].

This system also attempts to incorporate learned
patterns of control into the body model. The approach
we take is based on the behavior modeling framework
introduced in Pentland and Liu 1995[6]; it is also re-
lated to the behavior modeling work of Blake[4] and
Bregler[1]. However, the controller described here oper-
ates on a 3-D non-linear model of human motion that
is closer to true body dynamics than 2-D linear models.
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Figure 1: The flow of information though the system.

2 Recursive Tracking Framework

The human body is a complex dynamic system, whose
visual features are time-varying, noisy signals. Accu-
rately tracking the state of such a system requires use
of a recursive estimation framework, as illustrated in fig-
ure 1. The tightly coupled elements of the framework
are the observation model relating noisy pixel-level fea-
tures to the higher-level skeletal model and vice versa,
the dynamic skeletal model itself, and a collection of
typical behaviors.

2.1 Dynamics

There are a wide variety of ways to model the human
body. A kinematic model can only describe the static
state of a system. A system in motion is better described
when the dynamics of the system are modeled as well.
In a dynamic model the state vector includes velocity
as well as position: (q, q̇). In real systems, such as the
human body, the state evolves according to Newton’s
First Law:

q̈ = W ·Q (1)

Where Q is the vector of external forces applied to the
system, and W is the inverse system mass matrix.

2.1.1 Hard Constraints

Hard constraints represent additional absolute limi-
tations imposed on a system. One example is the kine-
matic constraint of a skeletal joint. Our model follows
the virtual work formulation[8]. In a virtual work for-
mulation, all the links in a model have full range of
unconstrained motion. Hard kinematic constraints on
the system are enforced by a special set of forces c:

q̈ = W · (Q + c(q, t)) (2)

The constraint forces do not add energy if they lie in
the null space complement of the constraint Jacobian.
Combining that requirement with the constraint defini-
tions results in a linear system of equations with only

the one unknown, λ:

−JT WJλ = ρ (3)

Where J is the constraint Jacobian, ρ is a known vector,
and λ is the vector of unknown Lagrange multipliers.
See [9] for more information this constraint system.

2.1.2 Soft Constraints

Some constraints are probabilistic in nature. Noisy
image measurements are a constraint of this sort, they
influence the dynamic model but do not impose hard
constraints on its behavior. Soft constraints such as
these can be expressed as a potential field acting on the
dynamic system. The incorporation of a potential field
function that models a probability density pushes the
dynamic evolution of the model toward the most likely
value, starting from the current model state.

The controllers in Section 3, will be represented as
time-varying potential field and may depend on the sys-
tem state itself:

Qf = f(X,q, q̇) (4)

2.2 The Observation Model

Our vision system tracks regions that are visually sim-
ilar, and spatially coherent: blobs. We can represent
these 2-D regions by their low-order statistics. Clusters
of 2-D points have 2-D spatial means and covariances,
which we shall denote µ and Σ. For computational con-
venience we will interpret these blobs with a Gaussian
model:

Pr(O|µk,Σk) =
exp(− 1

2
(O− µk)T Σ−1

k (O − µk))

(2π)
m

2 |Σk|
1

2

(5)
The Gaussian interpretation is not terribly significant,
because we also keep a pixel-by-pixel support map show-
ing the actual occupancy [9].

These observations supply constraints on the under-
lying 3-D human model. Due to their statistical nature,
observations are easily modeled as soft constraints. Ob-
servations are integrated into the dynamic evolution of
the system by modeling them as descriptions of poten-
tial fields, as discussed in Section 2.1.2.

2.2.1 The Inverse Observation Model

In the open-loop case, the vision system uses a Max-
imum Likelihood (ML) framework to label individual
pixels in the scene:

Γij = argmax
k

[Pr(Oij |µk,Σk)] (6)

where Γij is the labeling of pixel (i, j), and (µk,Σk) are
the second-order statistics of model k.
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The dynamic constraints expressed in the body
model allow predictions to be made about likely future
configurations. The predictions are projected from 3-D
model space into 2-D feature space. These predicted
observations become prior information, v, for the vision
system. This prior information directly affect the inter-
pretation of individual pixels. Integrating this informa-
tion into the 2-D statistical decision framework results
in a Maximum A Posteriori decision rule:

Γij = arg max
k

[Pr(Oij |µk,Σk) · Pr(Oij |vk)] (7)

3 Models of Purposeful Motion

Observations of the human body reveal an interplay be-
tween the passive evolution of a physical system (the
human body) and the influences of a an active, complex
controller (the nervous system). Section 2.1 explains
how, with a bit of work, it is possible to model the phys-
ical aspects of the system. However, it is very difficult
to explicitly model the human nervous system, so the
approach of using observed data to estimate probability
distributions over control space is very appealing.

3.1 A Model for Control

Kalman filtering includes the concept of an innovations

process. This is the difference between the actual ob-
servation and the predicted observation transformed by
the Kalman gain:

νt = Kt(yt −HtΦtx̂t−1) (8)

The innovations process, ν, is the sequence of informa-
tion in the observations that was not adequately pre-
dicted by the model. According to control theory, if we
have a sufficient model of the dynamic process and the
observation model, and white, zero-mean Gaussian noise
is added to the system, both in the observation stream
and into the real dynamic system itself, then the innova-
tions process will be zero-mean and white. Inadequate
models will manifest as correlations in the innovations
process.

As described above, we have significant models of the
observed human in terms of appearance, perspective,
and passive physics. The most significant unmodeled
aspect of human motion is active control. Purposeful
human motion includes significant structure due to the
active control of nerves and muscles that is not currently
well modeled.

A simple example is helpful for illustrating this idea.
Assume that we model hand motion with a linear, con-
stant velocity Kalman filter. If we track the hand mov-
ing in a circular motion, and the model is sufficient, then
the errors in the predictions should be solely due to the
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Figure 2: Modeling tracking data of circular hand mo-
tion. Errors from passive physics alone are reduced by
a learned model of control.

noise in the system. Figure 2 show that model is not suf-
ficient. The innovations,ν, contain significant structure.
Plotting the innovations along the path of observations
make the relationship between the observations and the
innovations clear: there is some unmodeled process act-
ing to keep the hand moving in a circular motion (left
of Figure 2). The most significant unmodeled process
is the purposeful control signal that being expressed by
the active muscles.

In this example, there is one active, cyclo-stationary
control behavior, and it’s relationship to the state of
the physical system is straightforward. If we use the
smoothed innovations as our model and assume a lin-
ear control model of identity, then the linear prediction
becomes:

x̂t = Φtx̂t−1 + Iut−1 (9)

where ut−1 is the control signal applied to the system.
The right plot in Figure 2 shows the result. The in-
novations are now near zero and we have explained a
significant source of unmodeled structure.

This same idea can be applied to the non-linear mod-
els described in Section 2.1. The next section examines
a more powerful form of model for behavior.

3.2 Hidden Markov Models of Behavior

Since human motion evolves over time, in a complex
way, it is advantageous to explicitly model temporal de-
pendence and internal states in the control process. A
Hidden Markov Model (HMM) is one way to do this,
and has been shown to perform quite well recognizing
human motion[7].

The probability that the model is in a certain state,
Sj given a sequence of observations, O1,O2, . . . ,ON , is
defined recursively. For two observations, the density is:

Pr(O1,O2, s2 = Sj) =

[

N
∑

i=1

πibi(O1)aij

]

bj(O2) (10)
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Where πi is the prior probability of being in a state i,
and bi(O) is the probability of making the observation
O while in state i. This is the Forward algorithm for an
HMM.

Estimation of the control signal proceeds by identi-
fying the most likely state given the current observation
and the last state, and then using the observation den-
sity of that state as described above. We restrict the
observation densities to be either a Gaussian or a mix-
ture of Gaussians.

3.3 Behavior Alphabet Auto-Selection

One of our goals is to observe a user who is interacting
with a system and be able to automatically find patterns
in their behavior. Interesting questions include:

• Is this (a)typical behavior for the user?

• Is this (a)typical behavior for anyone?

• When is the user transitioning from one behav-
ior/strategy to another behavior/strategy?

• Can we do filtering or prediction using models of
the user’s behavior?

However, before we can build a model of behav-
ior we must find the behavior alphabets that pick out
the salient movements relevant to the questions above.
There probably will not be one canonic alphabet for all
tasks but rather many alphabets each suited to a group
of tasks. Therefore we need an algorithm for automat-
ically generating and selecting effective behavior alpha-
bets. The goal of finding an alphabet that is suitable for
a machine learning task can be mapped to the concept
of feature selection.

In rough terms, our alphabet selection algorithm is
a clustering algorithm that uses a task-related criterion.
We chose to use HMMs to model each behavior in an
alphabet. Candidate alphabets were generated by clus-
tering the raw features with HMMs. Free parameters of
the clustering were:

1. N, Number of HMMs (number of behaviors )

2. S, Number of States per HMM (complexity)

3. T, Time Scale (typical behavior length)

For each set of parameters, we clustered the raw fea-
tures using an algorithm that can be interpreted as K-
Means where the Gaussians are replaced with HMMs.
A more complete description of the algorithm can be
obtained in [2]. The centroids that result are HMMs
that each encode a time sequence in raw feature space
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Figure 4: Sum Square Error of a Physics-only tracker
(triangles) vs. error from a Physics+Behavior Tracker

(i.e. a behavior). Each HMM is a behavior or sym-
bol in an alphabet that was used to convert the raw
features to soft symbols or likelihoods by means of the
Forward Algorithm. So if the number of HMMs used is
N , then the alphabet size is N and the raw features were
mapped to a likelihood space of N dimensions. The next
step was to use the likelihoods to build a classifier for
a given task and evaluate the classifier’s performance.
The classifier’s performance was then fed back to the
cluster parameter search for model selection. This pro-
cess is illustrated in Figure 3 and outlined below:

1. Input Raw Features (Innovations), ν

2. For each (N, S, τ)

3. Cluster ν with N S-state HMMs at Time Scale τ

HMMs H

4. Use HMMs obtained to generate likelihood traces
L(t) = P (ν(t)|H)

5. Use L to train and test a classifier for a given task,

6. Select H that maximizes step 5’s performance.

We chose 2 tasks to explore this method of alphabet
selection. For context, we employed a simple virtual re-
ality game that requires a player to pop bubbles that fall
from above and whack wuggles (small creatures) that sit
on a table. The player’s motions were tracked and la-
beled for three types of behavior:

1. Whacking a wuggle

2. Popping a bubble

3. Experiencing tracker failure

Task 1 was to recognize these 3 classes of behavior. Task
2 was to be able to distinguish the playing styles of
different people.
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4 Results

The circular motion example from Section 3.1 was used
for tracking performance evaluation. The dynamic
model allows the system to recover from occlusions and
reject inconsistent noise, but it cannot predict the pur-
poseful aspect of the motion. The inclusion of a behavior
model fixes this deficiency. Figure 4 compares noise in
the two cases. It can be seen that there is a significant
increase in performance.

The game described in Section 3.3 was used to evalu-
ate automatic alphabet discovery. Volunteers played for
ten minutes. The data was labelled for intentional state
during game play and for player identity. This data was
split into training and test sets.

Figure 5 shows the results of searching the model pa-
rameter space for the best alphabet in the player iden-
tification task. The plot show the performance surface
parameterized by number of HMMs (N), and the fun-
damental timescale of the HMMs (T ). The best alpha-
bet parameters for distinguishing the 3 players was 3
elements, with 10 states each and a base time scale of
32 frames (1s). Figure 6 shows alphabet traces for the
three players over approximately one minute of play.
These traces are the features used to do player identi-
fication. Player identification performance was 75% for
three players.

Figure 7 illustrates the actions of the best HMMs
in the intention identification task for a specific player.
For this player the best intention alphabet parameters
were 3 elements, with 9 states each and a base time scale
of 8 frames (250ms). The plots show the data in grey,
and the mean position and iso-probability contours in
black. The left and right HMMs seem to be explaining
salient motions for recognizing player’s intention, while
the middle HMM is modeling the tracker failures

5 Conclusion

We have presented a framework for human motion un-
derstanding, defined as estimation of the physical state
of the body combined with interpretation of that part
of the motion that cannot be predicted by passive
physics alone. The behavior system is capable of auto-
matically discovering alphabets to describe salient mo-
tion paradigms that are tuned to specific interpretation
tasks. The behavior system operates in conjunction
with a real-time, fully-dynamic, 3-D person tracking sys-
tem that provides a mathematically concise formulation
for incorporating a wide variety of physical constraints
and probabilistic influences. The framework takes the
form of a non-linear recursive filter that enables even
pixel-level processes to take advantage of the contextual
knowledge encoded in the higher-level models. Some
of the demonstrated benefits of this approach include:
increase in 3-D tracking accuracy, and insensitivity to
temporary occlusion.
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