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Abstract

This paper describes a real-time, fully-dynamic, 3-D person
tracking system that is able to tolerate full (temporary) oc-
clusions and whose performance is substantially unaffected
by the presence of multiple people. The framework pro-
vides a mathematically concise formulation for incorporat-
ing a wide variety of physical constraints and probabilis-
tic influences. The framework takes the form of a recur-
sive filter that enables pixel-level, probabilistic processes to
take advantage of the contextual knowledge encoded in the
higher-level models. Results are shown that demonstrate
both qualitative and quantitative gains in tracking perfor-
mance.

1 Introduction

This paper describes a real-time, fully-dynamic, 3-D person
tracking system that is able to tolerate full (temporary) oc-
clusions and whose performance is substantially unaffected
by the presence of multiple people. The system is driven
using 2-D blob features observed in two or more cameras
[2, 22]. These features are then probabilistically integrated
into a fully-dynamic 3-D skeletal model, which in turn drives
the 2-D feature tracking process by providing 2-D projec-
tions of the 3-D model predicitions.

The feedback between 3-D model and 2-D image features
is a recursive framework similar to an extended Kalman
filter. Previous attempts at person tracking have utilized
generic, mid-level image features (such as edges) that are
computed as a preprocessing step, without consideration of
the task to be accomplished. Our application is unusual,
because the framework directly couples raw pixel measure-
ments with an articulated, dynamic model of the human
skeleton: no part of the system is blindly feed-forward. In
this aspect our system is similar to that of Dickmanns in
automobile control [6], and we obtain similar advantages in
efficiency and stability though this direct coupling.

This paper will begin by describing our formulation for
driving a 3-D skeletal model from 2-D probabilistic mea-
surements, and then address the problem of incorporating
feedback from the 3-D model to the 2-D feature finding pro-
cess. Finally, we will report on experiments showing an in-
crease in 3-D tracking accuracy, insensitivity to temporary
occlusion, and the ability to handle multiple people.
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1.1 Related Work

In recent years there has been much interest in tracking
the human body using 3-D models with kinematic and dy-
namic constraints. Perhaps the first efforts in body tracking
were by Badler and O’Rourke 1980[15], followed by Hogg
1988 [14], and other variations on their basic method[20, 3].
With the exception of Badler, these early efforts employed
2-D kinematic models of the human body driven by edge
information.

Gavrila and Davis [8] and Rehg and Kanade [19] used
3-D kinematic models driven by edge data from multiple
cameras in an analysis-synthesis framework. Both of these
systems used the kinematic models to deal with limited oc-
clusions, and thus could begin to handle a greater range of
body motions.

In parallel to that work, some researchers began using
dynamic models to track the human body. Pentland and
Horowitz 1991 employed non-rigid finite element models
driven by optical flow [16], and Metaxas and Terzopolous’s
1993 system employing deformable superquadrics [10, 13]
driven by 3-D point and 2-D edge measurements. More
recently Bregler[5] has combined dynamic techniques with
2-D, region-based features with good results.

These systems all suffer from problems with self-
occlusion. In general, they either rely on expensive search
techniques to find consistent solutions or simply drop oc-
cluded body parts. This situation is exacerbated by the
common use of the analysis-synthesis framework that forces
early processing stages to make decisions without the ben-
efit of context that is readily available in other parts of
the system. Isard and Blake[9] call this the problem of
ambiguous data. They suggest the Condensation method
that avoids this search by using a probabilistic framework
to carry a multitude of possible hypotheses. Unfortunately
it requires the propagation hundreds to thousands of hy-
potheses to track even a single hand, and thus remains very
far from real-time for this problem.

Recent work by Metaxas[11] comes close to breaking the
barrier between ambiguous features and the context needed
to resolve them by using dynamic predictions to drive a
view-point selection algorithm, but the feature computation
itself is a blind feed-forward process.

This work combines 3-D dynamic and kinematic mod-
els with region-based features to solve the body tracking
problem. It is unique in two important ways: it is a fully
recursive formulation and it is also completely real-time.



As we will explain below, this recursive framework makes
the system robust to occlusions and numerous other visual
ambiguities.

2 Mathematical Formulation

The human body is a complex dynamic system, whose vi-
sual features are time-varying, noisy signals. Accurately
tracking the state of such a system requires use of a recur-
sive estimation framework, as illustrated in figure 1. The
elements of the framework are the observation model re-
lating noisy low-level features to the higher-level skeletal
model and vice versa, and the dynamic skeletal model itself.
We will first describe the dynamic skeletal model, and then
the observation model and its inverse. Finally we descibe
a modification that addresses performance and engineering
concerns.

2.1 Full Dynamics

There are a wide variety of ways to model physical sys-
tems. The model needs to include parameters that describe
the links that compose the system, as well as information
about the hard constraints that connect these links to one
another. A model that only includes this information is
called a kinematic model, and can only describe the static
states of a system. The state vector of a kinematic model
consists of the model state, q.

A system in motion is more completely modeled when
the dynamics of the system are modeled as well. A dynamic
model describes the state evolution of the system over time.
In a dynamic model the state vector includes velocity as well
as position: q,q. And state evolves according to Newton’s
First Law:

aG=W-Q

Where Q is the vector of external forces applied to the sys-
tem, and W is the inverse of the system mass matrix. The
mass matrix describes the distribution of mass in the sys-
tem.

2.1.1 Hard Constraints

Hard constraints represent absolute limitations imposed
on the system. One example of a kinematic constraint is
a skeletal joint. Lagrangian dynamics can be used to sat-
isfy such hard constraints by choosing a state vector the
describes only the degrees of freedom left to the system][7].
This requires that the constraints be solved analytically at
model-building time.

While this formulation is very efficient, it requires an an-
alytical solution of the constraints to exist. It also precludes
modification of the constraint structure at run-time. Our
model instead follows the wvirtual work formulation [21]. In
a virtual work formulation, all the links in a model have full
range of unconstrained motion. Hard kinematic constraints
on the system are be represented as a special set of forces
C:

qa=W-(Q+C) (1)
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These constraints are functions of the systems state, and
may also be time varying:

C =c(q,t)

The constraints are defined so that they are satisfied when
c(q,t) = 0. If the constraint is satisfied at time tg, then
it will remain satisfied for all time if ¢ = 0 and ¢ = 0 also
remain zero for all time ¢ > ty. Since ¢ depends on ¢ and ¢,
differentiation gives us:
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and another differentiation:
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Setting ¢ = 0 and combining Equation 2 with Equation 1

gives us a system of linear equations that describes the set of

C that are consistent with continued constraint satisfaction:
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This system, in general, has many solutions. One
method of chosing a solution is the concept of virtual work.
Stated simply, virtual work requires that constraints never
change the energy of the system; constraints must do no
work. This can be accomplished by insuring that Cdq = 0.
Since dq is required to be in the null space of the constraint
Jacobian:

—d =0
a q
Requiring the constraint forces to lie in the null space com-
plement satisfies the virtual work requirement:

(4)

Combining Equation 4 with Equation 3 results in an equa-
tion with only the vector of unknowns , A:

oct _ dc
—|= W—| A=

oq dq
This equation can be rewritten to emphasize its linear na-
ture. J is the constraint Jacobian, k is the vector on the

right-hand side, and X is the vector of unknown Lagrange
multipliers:
()

Biconjugate Gradient Decent The linear system in
Equation 5 is large. Each rigid element in a 3-D model
contributes 6 variables to the length of q. Each constraint
contributes a number of variable to the length of A equal to
the number of unconstrained degrees of freedom. So for a
5-link upper-body model, W is rank 30, and A is length 15.

Fortunately the equation has some special structure. W
is block diagonal and is therefore easy to compute from it’s
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Figure 1: The flow of information though the system: 2-D observations to a 3-D dynamic model that feeds back to the 2-D

observation process.

block diagonal inverse, the system mass matrix M. The
constraint Jacobian J is sparse when the number of con-
straints is O(n), where n is the dimension of g.

The biconjugate gradient descent method for sparse ma-
trix systems[18] takes advantage of this special structure to
solve for A stably and efficiently. The algorithm works by
iteratively searching for the minimum of the potential field:

1
= -xTAx —bT'x

Fla) =5

This minimum occurs at the point where the gradient is
Zero:

VF=Ax—-b=0

For the constraint satisfaction problem x is the A we wish
to find, A is the sparse matrix —JTWJ, and b is k from
Equation 5.

2.1.2 Soft Constraints

We must also integrate image observation data into the
time evolution of the dynamic model. To accomplish this
we use the observation model developed in our earlier stereo
blob-tracking work (briefly described below), which relates
the 2-D distribution of pixel values to a tracked object’s
3-D position and orientation, thus providing a bridge to the
physical modeling layer.

Because these observation data are noisy, they influence
the dynamic model but do not impose hard constraints on
its behavior. Consequently, observation data provide a sort
of soft constraint on the model, and may be thought of as
forces acting on the model’s dynamics. For a large class of
Kalman filters this analogy is exact, that is, the mathemat-
ics of integrating forces acting on a dynamic body is iden-
tical to the mathematics of observation integration within
a Kalman filter [16, 13, 4]. Soft constraints have the addi-
tional advantage that they can also be used to model exter-
nal influences on the dynamic system, such as gravity.

Soft constraints such as these can be expressed as a po-
tential field acting on the dynamic system. A potential field
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is function over space that, when evaluated at a given posi-
tion, applies a force to the model:

Qy = f(p)

Where Qy is the component of Q contributed by the po-
tential field when measured at point p. The potential field
is a good abstraction for modeling data since typical sen-
sor noise distributions can be easily modeled as deforma-
tions of the field, for instance, measurement uncertainty in
one direction can be modeled by making the potential field
proportionally broader or narrower. The incorporation of
a potential field function that models a probability density
pushes the dynamic evolution of the model toward the most
likely value, starting from the current model state.

Note that functions that take the model state as input,
such as a control law, can also be represented as a time-
varying potential field. One relevant example is incorpo-
ration of a probability distribution over link position and
velocity:

2.2 The Observation Model

The low-level features extracted from video comprise the
final element of our system. Our system tracks regions that
are visually similar, and spatially coherent: blobs [17, 12].
The blob spatial statistics are described in terms of their
second-order properties for which we denote p as the mean
and A as the covariance. For computational convenience we
will interpret this as a Gaussian model, so the probability
of an observaion o (of a certain color and position within
the image), given a blob model is:

exp(—3(0 — p) YA (0 — )

Pr(o|y,, Ax) = PRETI
)2 k

The Gaussian interpretation is not terribly significant, be-
cause we also keep a pixel-by-pixel support map showing
the actual occupancy [22].



Like other representations used in computer vision and
signal analysis, including superquadrics, modal analysis,
and eigen representations, blobs represent the global as-
pects of the shape and can be augmented with higher-order
statistics to attain more detail if the data supports it. The
reduction of degrees of freedom from individual pixels to
blob parameters is a form of regularization which allows
the ill-conditioned problem to be solved in a principled and
stable way:.

These 2-D features are the input to the 3-D blob esti-
mation formulation used by Azarbayejani and Pentland [2].
This relates the 2-D distribution of pixel values to a tracked
object’s 3-D position and orientation. In our current system
we track the hands and head using their color and shape
characteristics; the observation equation therefore relates
the distribution of hand/face pixel values to the probability
distribution of the 3-D state variables that characterize the
skeletal models’ hand and head links.

These observations supply constraints on the underlying
3-D human model. Due to their probabilistic nature, obser-
vations are easily modeled as soft constraints. Observations
are integrated into the dynamic evolution of the system by
modeling them as descriptions of potential fields, as dis-
cussed in Section 2.1.2. The simplest such model is a linear
spring model with a fixed a priori weighting p:

Qr = plla — gl

A more sophisticated model takes into account the covari-
ance of the observation model, A, to create a more detailed
potential field:

Qi = pla— pp) " AL (a — )

Here p is again an a priori weighting of the influence of the
observations on the model. Thus p plays the role of the
Kalman gain in the recursive estimation process, and its
value is set accordingly.

2.2.1 The Inverse Observation Model

It only remains to bring information from the human
model back down to the initial stages of the vision system.
In the absence of this information, the pixel classification
decisions were forced to rely solely on temporal smoothness
constraints in the 2-D image plane. The decision rule takes
the form:

I'ij = argmax [Pr(oi;|py, Ax)] (6)
where I';; is the labeling of pixel (¢, j), and (g, Ax) are the
second-order statistics of model k.

Since the human model exists in 3-D a projection op-
eration is required to convert the model’s 3-D predictions
into the 2-D features of the vision system. Given the cur-
rent state of the model q, it is possible to compute the
state of an individual link that matches a specific tracked
feature (say the hand), and compute 3-D means and covari-
ances. Then, given a model of the camera, it is possible to
calculate the projection of that state into 2-D and call it
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(u*, A"). For the first moment (the mean) that calculation
is a perspective projection:
x
T2
Yy
T2

where (z,y, z) is the mean of the 3-D description of the link,
f is the focal length of the camera model, and (u,v) is the
projection of the mean into 2-D. Projection of the second
moments is more difficult since the perspective projection of
a Gaussian distribution is not itself Gaussian. We employ
an approximation:

Agy
(157

*_

where A, is the orthogonal projection of the 3-D covari-
ance.

Since the vision system uses a stochastic framework, it is
necessary to represent this link projection as a probabilistic
model:

exp(—1(0 — pp)TA; " (0 — pp))
(2m)| A

Pr(olq) =

Now that the 3-D model features are projected into the
2-D camera coordinates, they can be integrated into the 2-D
probabilistic decision framework. This provides the Maxi-
mum A Posteriori decision rule with the much better prior
information contained in the higher-level models.

2.3 A Dynamics Optimization

Large dynamic systems like those described in Section 2.1
are difficult to engineer. There are many parameters that
must be chosen, and furthermore there are few guidelines
available, so, often a great deal of expertise with dynamic
simulation is required to realize a working system. This sort
of system is also computationally rather costly: the system
described above consumes nearly 100% of a 500MHz Alpha
21164 processor.

The above system can be easily converted to an energy-
based kinematics engine as describe by Witkin [21], by drop-
ping the integration over acceleration. Here are the update
equations for the dynamic case using the synchronous Euler
method:

Q@G = W-Q
G = Q-1+AL-Gi
QG = Q-1+ AL-q

and here are the modified equations for the kinematic case:

a = W-Q
QG = At-qGi-1
A = Q-1 +AL-q

notice the change in calcuation of ¢;. In this form the sys-
tem retains all it’s power to find minimal solutions to mul-
tiple constraints and continues to be a fertile ground for



sensor fusion. However, it loses its grip on Newtonian real-
ity, and with that, much of its predictive power.
Fortunately there are other ways of making predictions
about dynamic systems, including Kalman filters. Lin-
ear Kalman filters are computationally efficient, and, while
Kalman filters also have a large number of parameters that
must be chosen, there is a mature literature on the sub-
ject [1]. The update equation for the linear Kalman filter is
the matrix form of the dynamic update equations above:

qt di—1
QG | =Pt | Qo1 | +Wid (7)
Qs Ai—1

where ®;_; is the system transition matrix. In our system
® is constant and represents a constant acceleration model
Deviations from that model are captured in the random
vector w that represents the system noise. Kalman filters
don’t require multiple calculations per observation to con-
verge. At each observation time the optimal state estimate
is calculated with the well known linear equation:

Qe Qefe—1 Qrfe—1
c;lt\t = ‘Elt|t—1 +Ki |y —Hy ‘Elt|t—1
éAlt\t ‘.flt|t71 ‘.fltltfl

Where K; is the current Kalman Gain, and y; is the ob-
served 3-D position. H; is the linear map between obser-
vation vector and the state vector. H; can be linear since
the perspective non-linearities are resolved by another part
of the system as described in Section 2.2. H; may be time-
varying depending on the availability of observations at time
t. The Kalman gain K; is computed in the standard way,
recursively calculating several internal covariance matrices
including the error covariance estimate Py;:

Py, = (I-KH;)Pyy_y
where Py;_, is the previous error covariance prediciton:
Pye—1 = ‘I’Pt—l\t—l‘I)T +R

and R is the covariance of w in Equation 7. Py;_; is a
measure of our confidence in our predictions. The norm
[P¢¢—1] is used as a confidence metric by the observation
model described in Section 2.2.1. Py;_; is also used to
update K;:

-1
K, =P,,H [H,P,,_H] —R]

For a detailed derivation of these equations see Gelb [1].

A system that uses one such individual Kalman filter per
tracked body part demonstrates good local tracking char-
acteristics (in fact, optimal characteristics for some nar-
row definition of the word), but are subject to the fail-
ing that they occasionally make predictions that, taken to-
gether, violate the global, known constraints of the system.
By linking independent Kalman filters together with the
kinematics-only constraint formulation, we achieve quali-
tatively identical performance to the full-dynamics imple-
mentation with significantly less engineering and only 15%
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Figure 2: Frames on the left show video and 2-D blobs from
one camera in the stereo pair. Frames on the right show
corresponding configurations of the dynamic model at that
instant in time.

utilization of the same 500MHz Alpha 21164 processor. The
state estimates of the Kalman filter simply become the goals
for the constraint system. The kinematics iterate to a glob-
ally consistent answer, and those results then become the
new state estimates.

A more intimate connection could be achieved with con-
siderably more work and computation by using the Jaco-
bians calculated in the constraint system to guide extended
Kalman filters, but we didn’t find this to be necessary.

It’s important to remember that these linear Kalman
filters sit within the larger recurive estimation framework
described in the rest of this paper. They share the “Dy-
namics” box in Figure 1 with the constraint system.

3 Results

The dynamic skeleton model currently includes the upper
body and arms. Figure 2 shows the real-time response to
various target postures. The model interpolates those por-
tions of the body state that are not measured directly, such
as the upper body and elbow orientation, by use of the
model’s intrinsic dynamics and the behavior (control) mod-
els. The model also rejects noise that is inconsistent with
the dynamic model. Table 1 compares RMS noise in the
dynamic model output with noise in the underlying fea-
ture tracker. The “line following” test measures error from
the best-fit line to data produced by constraining the users
hand to move along a linear trajectory. The “rotational jit-
ter” measures error to a smoothed version of data obtained
by smooth motions of the user’s hand through a rotation.
It can be seen that Figure 3 illustrates another advan-
tage of feedback from higher-level models to the low-level
vision system. Without feedback, the 2-D tracker fails if
there is even partial self-occlusion from a single camera’s
perspective. With feedback, information from the dynamic
model can be used to resolve ambiguity during 2-D tracking.



No Feedback

Feedback

Figure 3: Tracking performance on a sequence with significant occlusion. Top: A diagram of the sequence and a single
camera’s view of the motion Left: This graph shows an example of tracking results without feedback. Right: This shows
an example of correct tracking when feedback is enabled. Notice the smooth traces in the YT and ZT projections.

tracker | dynamic model
line following 14 cm |09 cm
rotational jitter | 2.2 deg | 0.6 deg

Table 1: Comparison of RMS tracking error for tracking
with and without dynamic feedback.

Figure 4: Users sharing the workspace. Physical constraints
stabilize the 2-D tracker with respect to competing targets.

The model predictions also stabilize tracking by pro-
viding constraints that help the tracking algorithm reject
distractions in the environment. The addition of another
person to the scene, as in Figure 4, produces many patches
in the image that are similar to the target blobs. With-
out high-level model knowledge, the 2-D tracker can only
reject these distractions based on some assumptions about
the temporal stability of blobs. With the addition of high-
level feedback, however, the 2-D tracker now has informa-
tion about the physical constraints of the underlying sys-
tem. Consequently, it is generally not distracted by com-
peting targets (such as other people).

The full system currently runs at at 30Hz utilizing four
computers: 60% of an SGI 175MHz R10K Os per camera
for blob-level processing, 100% of an Alpha 500MHz 21164
for dynamics and constraints, and 30% of an SGI 195MHz
R10K Indigo? Impact for stereo processing and graphics ren-
dering. The computers are connected to 100Mbps switched
ethernet. The optimizations described in Section 2.3 reduce
the utilization of the Alpha to 15%. That optimized dynam-
ics and constraint module could be migrated to one of the
under-utilized SGIs.

4 Conclusion

We have presented a real-time, fully-dynamic, multi-
camera, 3-D person tracking system. The system adopts
an extended Kalman filter framework that reconciles the
2-D tracking process with high-level 3-D models. This sta-
bilizes the 2-D tracking by directly coupling an articulated
dynamic model with raw pixel measurements. Some of the
demonstrated benefits of this added stability include: in-
crease in 3-D tracking accuracy, insensitivity to temporary
occlusion, and the ability to handle multiple people.
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